Monday, January 21, 2013


Could the secret to breakthrough science be as simple as having fun?

Puzzle Master
Puzzle Master As a computer scientist, Erik Demaine uses math to model physical systems, particularly ones that fold. His work has informed biology, robotics, and design, but it all stems from the same impulse: having fun. JJ Sulin
Just before he was old enough to vote but after he’d begun a doctorate in computer science, Erik Demaine arrived in New York City for the annual OrigamiUSA convention. He’d recently taken an interest in the hobby because he thought the math behind it might make for a compelling dissertation topic. Walking the aisles of the convention, Demaine saw the usual paper artistry—delicate insects, puffed-up bunnies—but he also learned of more elaborate forms, such as a three-car model locomotive crafted from a single sheet of paper. That train, like many intricate works of origami, sprang from a basic folding pattern called the box pleat.
Developed in the mid-1960s, the box pleat is a grid of vertical and horizontal creases combined with some well-placed diagonals. A Swiss physicist named Emmanuel Mooser popularized the pattern when he used it to create what’s now known as Mooser’s Train, one of the great achievements in origami. At the convention, Demaine began to wonder whether the box pleat could be used to make even bigger, more complex designs. Could it fold into a Mooser’s Passenger Jet, a Mooser’s Rocket Ship, or a Mooser’s Full-Size Nuclear Submarine?
In 2001, at the age of 20, Demaine joined the faculty of MIT, as a professor of computer science. He was the youngest professor ever hired by the university. In 2003, he won a MacArthur genius grant. By then, he’d set aside the box pleat in favor of other work on folding. But a few years later Mooser’s Train came rumbling back into his mind. He’d begun collaborating with another MacArthur fellow, the roboticist and computer scientist Daniela Rus, to design “programmable matter.” They wanted to create a sheet made from interlocking panels that could turn into any object, from a sofa bed to a computer, with the push of a button. To do so, they would need a simple folding template that was versatile enough to handle many different forms. Demaine started with the box pleat.
Working with a pair of students and his father, Marty, a technical instructor and artist-in-residence at MIT, Demaine proved mathematically that the box pleat had no limits. A single sheet of paper, were it big enough, could fold into more than a model train. It could become pretty much anything in the universe. Building on that work, Demaine, Rus, and a collaborator at Harvard applied the pattern to a set of panels made of glass fiber and polymer resin and made a robot that could fold from a boat shape into a plane shape. If this technology could be scaled, a similar design with smaller panels could one day morph into an e-book reader or a smartphone or any other design downloaded from the Web.
Demaine chooses projects based purely on his curiosity, regardless of where they may lead.For many scientists, the work in programmable materials could become the centerpiece for a long and fascinating career, but for Demaine it occupies only a small part of his research portfolio. His folding math has informed how auto manufacturers design safety airbags. He’s sketched out how a Star Trek–style replicator might work using bits of DNA and RNA, collaborated with archaeologists to decipher a coded Incan language, and made paper sculptures with his father that now are part of the Museum of Modern Art’s permanent collection in New York. His latest project could be described as computational glassblowing. By modeling how glass behaves under various conditions, he could help glassblowers refine their techniques and develop new designs.
At 31, Demaine has published nearly 300 papers and won numerous honors, including Popular Science Brilliant Ten award in 2003. It would be easy to attribute his success to the mere fact of genius, but that would overlook the most important aspect of his work. Instead of concerning himself with applications or even defining a specialized area of research, Demaine chooses projects based purely on his curiosity, regardless of where they may lead. Where others seek answers, Demaine looks for questions. “I collect problems,” he says. “The problems are the key to everything.”